

Southampton

Trial evaluation

June 2019

Southampton

Trial evaluation

- Experimental design
 - SAVE: best practice trial design
 - Power analysis and sample size
 - Recruitment outcomes
- Trial evaluation challenges
 - Initial and revised analysis methods
 - Timescales and reference points
 - Attrition
- Summary and recommendations

What is 'best practice'?

Table 1: Assessing behavioural interventions: A best practice framework (after Fredericks et al (2016))

Feature	Recommendation
Formulate Hypotheses	Clearly specify the expected effect of the interventions on behavior including their magnitude, direction and nature.
Program Design	Plan a sample size sufficient to give the statistical power required to test the hypotheses (to enable robust conclusions);
	Draw a random & representative sample (to enable generalisation) of the population of interest without self-selection (to avoid bias);
	Use a randomized control trial design wherever possible in order to be able to compare intervention with non-intervention groups;
	Randomly allocate participants to control or trial groups without self-selection (to avoid bias);
Methodology	Define and assess sample 'representativeness';
	Collect baseline data on key socio-economic and demographic attributes to assess sample 'representativeness';
	Establish that control and intervention groups are equivalent in key respects prior to interventions.

Statistical power and sample size

Source: UoS analysis of Irish CER Domestic Demand Response pre-trial consumption data Mean kWh 16:00 - 20:00 ("Evening peak") p = 0.05, P = 0.8

- **Each** trial group > 1000
- ⇒ Control + 3 trial groups
- \Rightarrow Total sample > 4,000 households

Southampton

Sampling

- Hampshire, Isle of Wight, Southampton, Portsmouth
- Sampling stratified by the random selection of Census OAs within deprivation quintiles
- Random selection of 50 addresses from each
- Random allocation to treatment groups

Recruitment outcomes: representative?

Income

Environmental attitudes

Source: UoS analysis of SAVE vs Understanding Society Wave 4 sample for South East England

(weighted for non-response)

Error bars: 95% Confidence Intervals

Recruitment outcomes: biased?

• Electricity consumption

Environmental attitudes

Error bars: 95% Confidence Intervals

Source: UoS analysis of SAVE vs Understanding Society Wave 4 sample for South East England

(weighted for non-response)

Recruitment outcomes

Large sample size

Statistically robust

Random allocation to trial groups

Equivalent groups: differences in consumption can be attributed to intervention

Random, representative sample

Results are generalisable to the wider population

Analysis method – equivalent trial groups

Analysis method – asymmetrical groups

Mean 15-minute Wh: peak hours (16:00 - 20:00)

Timescales – short and long-term effects

SAVE sample households: 2017-11-13 to 2017-11-26 Sample size: Control = 861, Treatment = 794 & 791 Error bars indicate 90 percent confidence interval for estimates

Error bars: 90% confidence interval for the estimates

Sample attrition

Sample attrition

Cumulative total of LED lightbulb installations Shaded area denotes Trial Period 2

Sample attrition

Error bars: 90% confidence interval for the estimates Grey lines indicate effect estimates by contrast week, blue line shows mean of estimates

Extended evaluation period, however this resulted in:

- Smaller sample
- Increased uncertainty in estimated treatment effects
- Difficulty in evaluating the maximum savings

Summary and recommendations

SAVE delivered a robust, best practice trial design to provide industry-leading evidence base for estimating and modelling demand response

- Even with careful design and implementation, the project faced evaluation challenges:
 - Small asymmetries between groups required a new analytical approach
 - Understanding responses to interventions required analysis across multiple time scales
 - Attrition and communications issues over the trial increased uncertainty
- Recommendations:
 - Plan for asymmetry in trial groups even for RCTs with equivalent trial groups at trial start
 - Be realistic about timescales around recruitment and interventions
 - Adapt analysis approaches to each intervention
 - Sample size: plan for attrition and communication issues

Thank you for listening.
t.w.rushby@soton.ac.uk
@tom_rushby
#SAVEClosedown

